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1. Introduction

A recent study by Pan and Heyliger [1] focused on the vibration of magneto-electro-elastic
simply supported plates. Their vibration results [1] for coupled magnet-electro-elastic materials
were based upon combining the effects of two materials. A form of the piezoelectric material
barium titanate (BaTiO3) was combined as a layered material with the magnetostrictive cobalt
iron oxide (CoFe2O4). Both materials are transversely isotropic of the 6mm crystal class. The
coupled magneto-electro-elastic analysis resulted from combining layers of the two materials.
In this study the fundamental problem described in Ref. [1] is extended to cylindrical co-

ordinates. The analysis is rendered one-dimensional by assuming certain axisymmetric solutions
that satisfy the governing equations. The three-dimensional character of the solution is preserved
by assuming a solution that would characterize the cylinder as infinite. In some sense the results
presented here are an extension of earlier work by Buchanan and Peddieson [2] on infinite
piezoelectric cylinders. The piezoelectric cylinder has been studied analytically by Paul [3], later
Paul and Raju [4] computed frequencies for solid cylinders and Paul and Venkatesan [5] extended
the analysis to include hollow cylinders. The papers by Paul and co-workers can serve as
benchmark solutions to validate the analysis given here.
The formulation presented here can be applied to a fully coupled magneto-electro-elastic

material. A fiber reinforced material wherein the matrix is CoFe2O4 and the fibers are BaTiO3 has
been studied by Huang and Kuo [6] and they proposed material properties for the combined
materials based upon the aspect ratio of ellipsoidal inclusions of BaTiO3 in a matrix of CoFe2O4
with volume ratio of 0.5 for the two materials. Subsequently, Huang et al. [7] proposed an analysis
that predicts a fiber volume fraction of 0.46 for developing an optimum magnitude for the
electromagnetic coupling constant. Aboudi [8] used the general method of cells to predict the
various electro-magneto-elastic material constants for a fully coupled composite material and
related the results to the fiber volume fraction. The optimum fiber content predicted by Aboudi [8]
of approximately 0.44 was in excellent agreement with that predicted in Ref. [7]. The material
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properties computed by Aboudi [8], and based upon his optimum fiber content are used in this
paper to study the coupled vibrational behavior of magneto-electro-elastic cylinders.

2. Governing equations

The complete equations governing the behavior of a piezoelectric cylinder have been recorded
by Paul and Raju [4] in terms of displacements and electric potential and the extension to coupled
magnet-electro-elasticity in cylindrical coordinates is straightforward. The governing equations
that relate the magnetic field to the magnetic potential are identical, in form, to those that relate
the electric field to the electric potential. It follows that all equations that govern electric
displacement are similar to those that govern magnetic induction.
The significant equations, for a finite element analysis, are the strain–displacement, electric

field–electric potential and magnetic field–magnetic potential equations along with the
constitutive equations. The strain–displacement equations are as follows:
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where u; v and w are the mechanical displacements corresponding to the cylindrical co-ordinate
directions r; y; and z: The strains, Si; are written in matrix notation using a single subscript and
Eq. (1) identifies the relation between elasticity notation and matrix notation. The electric field
vector Ei is related to the electric potential j as
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: ð2Þ

Similarly, the magnetic field Hi is related to the magnetic potential c as

Hr ¼ H1 ¼ �
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; Hy ¼ H2 ¼ �
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; Hz ¼ H3 ¼ �
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@z

: ð3Þ

The constitutive equations, following [1], relate stress Tk; electric displacement Dj and magnetic
induction Bj to strain, electric field and magnetic field as follows:

Tk ¼ CjkSk � ekjEk � qkjHk; ð4Þ

Dj ¼ ejkSk þ ejkEk þ mjkHk; ð5Þ

Bj ¼ qjkSk þ mjkEk þ mjkHk; ð6Þ

where Cjk; ejk and mjk are the elastic, dielectric and magnetic permeability coefficients, respectively;
ekj ; qkj and mjk are the piezoelectric, piezomagnetic and magnetoelectric material coefficients.
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The equations of motion, for the record, can be written in a general format that can be
specialized to cylindrical co-ordinates:

div T
¼
¼ r

@2~uu

@t2
; div D

-
¼ 0; div B

-
¼ 0; ð7Þ

where T
¼
is the stress tensor, r is the density and body forces, electric charge and current densities

have been neglected. Eq. (7) are given in expanded format in Appendix A for cylindrical co-
ordinates.
A completely coupled material matrix, assuming a hexagonal crystal class, corresponds to

Eqs. (4)–(6) and following Ref. [6], is written as
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with

C66 ¼ ðC11 � C12Þ=2:

3. Finite element formulation

A solution, similar to that used in Ref. [2], that satisfies the assumption of an infinite cylinder
and also satisfies Eq. (7) is as follows:

uðr; y; z; tÞ ¼ UðrÞ cosmy cos ðkz � otÞ;

vðr; y; z; tÞ ¼ V ðrÞ sinmy cos ðkz � otÞ;

wðr; y; z; tÞ ¼ W ðrÞ cosmy sin ðkz � otÞ;

jðr; y; z; tÞ ¼ FðrÞ cosmy sin ðkz � otÞ;

cðr; y; z; tÞ ¼ CðrÞ cosmy sin ðkz � otÞ; ð9Þ

where m is an integer and is the circumferential wave number, k is the longitudinal wave number
and o is the circular frequency. The analysis has effectively been reduced to a single co-ordinate but
retains a three-dimensional dependence for the solution depending upon the choice of m and k:
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The finite element model can be developed using the Rayleigh–Ritz variational formulation or
the Galerkin weighted residual method. The finite element equations will not be derived here but
the derivation would follow the discussion given by Buchanan and Peddieson [2] or Buchanan [9].
Assume the mechanical displacements, electric potential and magnetic potential can be
represented using suitable shape functions, such as

Ui ¼ ½Nu�fUg; F ¼ ½Nj�fFg; C ¼ ½Nc�fCg: ð10Þ

In application the same shape functions are used for mechanical displacements, electrical
potential and magnetic potential, but for derivation they are kept separate. In principal,
different shape functions could be used to represent the different variables. A formulation
that corresponds to a completely coupled system could be written in terms of the following
stiffness matrices:

½½Kuu� � o2½M��fUg þ ½Kuj�fFg þ ½Kuc�fCg ¼ 0;

½Kuj�TfUg þ ½Kjj�fFg þ ½Kjc�fCg ¼ 0;

½Kuc�TfUg þ ½Kjc�TfFg þ ½Kcc�fCg ¼ 0;

ð11Þ

where
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V
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and

dV ¼ 2pr dr: ð13Þ

The so-called B matrix is the assumed shape function matrix pre-multiplied by an operator
matrix whereby the operator matrix is dictated by the equation that is to be modelled. A three-
node quadratic shape function is assumed and combined with an operator matrix based
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upon Eq. (1) to form ½Bu� as
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Substituting Eq. (9) into Eq. (14) gives
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where there are six additional columns for N2 and N3: The matrix [Bj] is based upon Eq. (2) and is
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Similarly, Eq. (3) leads to
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The local stiffness matrix of Eq. (11) will be a 15
 15 matrix of which only the mechanical
displacement have a corresponding mass term. The electrical potential and magnetic potential
terms are eliminated using standard condensation techniques. The resulting stiffness matrix that
will be solved for eigenvalues is defined as

½Keq�fUg � o2½M�fUg ¼ 0; ð18Þ

where

½Keq� ¼ ½KIV � � ½KIII �½KII ��1½KI �: ð19Þ

The component matrices for Eq. (19) are

½KI � ¼ ½Kuc�T � ½Kjc�T½Kjj��1½Kuj�T;

½KII � ¼ ½Kcc� � ½Kjc�T½Kjj��1½Kjc�;

½KIII � ¼ ½Kuc� � ½Kuj�½Kjj��1½Kjc�;

½KIV � ¼ ½Kuu� � ½Kuj�½Kjj��1½Kuj�T: ð20Þ

The eigenvectors that correspond to the distribution of {F} and {C} can be computed as

fFg ¼ �½KVI ��1½KV �fUg ð21Þ

and
fCg ¼ �½KII ��1½KI �fUg; ð22Þ

where
½KV � ¼ ½Kuj�T � ½Kjc�½Kcc��1½Kuc�T;

KVI½ � ¼ ½Kjj� � ½Kjc�½Kcc��1½Kjc�T: ð23Þ

4. Analysis and results

Free vibration frequencies will be compared for cylinders of BaTiO3 as a single material,
CoFe2O4 as a single material and the magneto-electro-elastic material defined by Aboudi [8]. A
consistent definition for non-dimensional terms is necessary and they are assumed as follows. The
piezoelectric terms are those defined by Refs. [2,4] and the additional non-dimensional terms were
derived based upon the governing equations. Some terms do not appear in the final formulation of
equations used in this report, but would be required to non-dimensionalize the complete set of
coupled equations as given in Appendix A.

%Cij ¼ Cij=C44; %r ¼ r=a; %eij ¼ eij=e33; %qij ¼ qij=q33;

%mij ¼ mijC44=ðe33q33Þ; %eij ¼ eijC44=e233; %mij ¼ mijC44=q233;

%t ¼ tðC44=ra2Þ1=2; %F ¼ Fe33=C44a; %C ¼ Cq33=C44a;

%U ¼ U=a; %V ¼ V=a; %W ¼ W=a; O ¼ oaðr=C44Þ
1=2: ð24Þ

The material constants are given in several papers and Aboudi [8] is the source for the material
parameters used here. The actual material constants along with their non-dimensional
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counterparts are given in Table 1. The electromagnetic coupled material, that is, the material with
electromagnetic constants is based upon the graphical results of Aboudi [8]. Non-dimensional
equivalents cannot be computed for mij for BaTiO3 or eij for CoFe2O4, however any term (usually
unity) can be used on the diagonal of Eq. (8) for mij when qij and mij are zero and similarly for eij :
The anticipated accuracy of the analysis is demonstrated in Table 2. The results for a solid

cylinder of hexagonal PZT-4 using the formulation of Eq. (18) is compared with the solution
given by Paul and Raju [4]. The material constants are given in numerous Refs. [2,10]. The
accuracy of the analysis, as demonstrated in Table 2, is considered to be acceptable.
Frequency of free vibration for the materials of interest are given in Tables 3–5. Sufficient

results are tabulated in order that a complete description of the vibration behavior of each
material is established. The circumferential wave number m is an integer and varies from 0 to 6.
The longitudinal wave number varies from 0 to 4.
Frequencies for free vibration of an infinite piezoelectric solid cylinder of BaTiO3 are given in

Table 3. The case m ¼ 0 and k ¼ 0 gives pure uncoupled radial, torsional and longitudinal
modes of vibration. Results are tabulated for various values of the longitudinal wave number k
and for m ¼ 0 the torsional modes remain uncoupled. Similarly, longitudinal modes remain
uncoupled for k ¼ 0: Note that for small values of k; greater than zero, the frequency decreases
slightly for m ¼ 0 and 2, but increases with increasing k for m ¼ 1: For higher modes the
frequency continues to increase with increasing k; but the increase is slight.

ARTICLE IN PRESS

Table 1

Material properties for piezoelectric barium titanate, magnetostrictive cobalt iron oxide and a electromagnetic

composite

Material coefficient Actual Non-dimensional

BaTiO3 CoFe2O4 [8]a BaTiO3 CoFe2O4 [8]a

C11 (10)
9N/m2 166 286.0 218 3.86047 6.31346 4.36

C33 162 269.5 215 3.76744 5.94923 4.30

C12 77 173.0 120 1.79069 3.81898 2.40

C13 78 170.0 120 1.81395 3.75275 2.40

C44 43 45.3 50 1.0 1.0 1.0

C66 44.5 56.5 49 1.03488 1.24724 0.98

e15 C/m
2 11.6 0 0 0.62366 0 0.0

e31 �4.4 0 �2.5 �0.23656 0 �0.33333
e33 18.6 0 7.5 1.0 0 1.0

e11 (10
�9)C/Vm 11.2 0.08 0.4 1.39206 b 0.35556

e33 12.6 0.093 5.8 1.56667 b 5.15556

q15 N/Am 0 550.0 200 0 0.78605 0.57971

q31 0 580.3 265 0 0.82936 0.76812

q33 0 699.7 345 0 1.0 1.0

m11 (10
�6)N s2/C2 5.0 �590.0 �200 b �344.663 �84.0159

m33 10.0 157.0 95 b 91.715 39.9076

m11 (10
�9)N s/VC 0 0 0.0074 0 0 0.000143

m33 0 0 2.82 0 0 0.054493

aMaterial properties scaled from the graphical results of Ref. [8].
bNon-dimensional constant cannot be computed.
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Table 2

Comparison of frequencies O with Paul and Raju [4] for an infinite solid cylinder of PZT-4

Mode k ¼ 0:1

m ¼ 0 m ¼ 1 m ¼ 2

Ref. [4] Ref. [4] Ref. [4]

1 4.6553 l 4.6566 1.8993 l 1.8992 2.5664 r,t 2.5675

2 5.1364 r,l 5.1351 3.1592 r,t 3.1595 3.1869 l 3.1870

3 5.6150 t 5.6157 6.4131 l 6.4137 4.9322 r,t 4.9324

4 8.5426 l 8.5427 7.2250 r,t 7.2255 8.0348 l 8.0351

5 9.2020 t 9.2031 8.6812 r,t 8.6812 8.7667 r,t 8.7672

6 12.3862 l 12.3858 10.3487 l 10.3475 11.5787 r,t 11.5790

7 12.6774 r,l 12.6771 10.9107 r,t 10.9117 12.0578 l 12.0573

8 12.7028 t — 14.2200 l 14.2195 12.6654 r,t —

9 16.1747 t — 14.3831 r,t — 15.9757 l 15.9756

10 16.2241 l 16.2235 16.1993 r,t — 16.0084 r,t —

Table 3

Frequencies O for an infinite solid cylinder of piezoelectric barium titanate (BaTiO3), r—radial mode, l—longitudinal
mode, t—torsional mode

m Mode k ¼ 0:0 k ¼ 0:5 k ¼ 1:0 k ¼ 2:0 k ¼ 3:0 k ¼ 4:0

0 1 4.216 r 3.996 3.860 4.232 5.508 6.579

2 4.334 l 4.656 5.111 5.594 t 6.025 t 6.797 t

3 5.224 t 5.248 t 5.319 t 6.182 7.283 8.312

4 7.935 l 7.942 7.968 8.151 8.719 9.451 t

5 8.563 t 8.577 t 8.621 t 8.793 t 9.073 t 9.853

6 10.650 r 10.688 10.793 11.092 11.396 11.786

7 11.507 l 11.529 11.602 11.983 12.196 t 12.479 t

8 11.821 t 11.831 t 11.863 t 11.989 t 12.727 13.692

9 15.052 t 15.060 t 15.080 15.132 15.269 15.544

10 15.070 l 15.072 15.085 t 15.184 t 15.348 t 15.574 t

1 1 1.875 l 2.064 2.476 3.246 3.942 4.708

2 2.886 2.946 3.138 4.013 5.018 5.763

3 5.983 l 5.952 5.906 5.997 6.583 7.619

4 6.610 6.657 6.763 7.044 7.421 7.937

5 7.387 7.459 7.666 8.346 9.091 9.752

6 9.626 l 9.640 9.684 9.908 10.423 10.876

7 10.141 10.154 10.193 10.347 10.647 11.521

8 13.220 l 13.197 13.170 13.187 13.322 13.608

9 13.316 13.345 13.397 13.530 13.721 13.978

10 13.707 13.756 13.897 14.397 15.104 15.914

2 1 2.389 2.365 2.363 2.643 3.259 4.048

2 3.139 l 3.252 3.512 4.136 4.774 5.460

3 4.500 4.555 4.721 5.375 6.246 7.016
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Results are given in Table 4 for a material with CoFe2O4 hexagonal material properties. The
frequencies of Table 4 represent the first tabulated results for an infinite solid cylinder with
magnetostrictive material properties. Observations similar to those for the behavior of BaTiO3 are
apparent.
The electromagnetic material proposed by Aboudi [8] is analyzed in the format of Eq. (8) using

the non-dimensional constants of Table 1. Results are reported in Table 5. The lowest frequency
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Table 3 (continued)

m Mode k ¼ 0:0 k ¼ 0:5 k ¼ 1:0 k ¼ 2:0 k ¼ 3:0 k ¼ 4:0

4 7.504 l 7.501 7.500 7.597 7.967 8.693

5 8.070 8.095 8.165 8.400 8.743 9.218

6 9.889 9.933 10.057 10.462 10.901 11.339

7 11.225 l 11.241 11.294 11.529 11.889 12.240

8 11.682 11.695 11.737 11.930 12.415 13.280

9 14.858 14.850 14.852 14.904 15.042 15.306

10 14.859 l 14.879 14.913 15.023 15.195 15.434

3 1 3.680 3.667 3.658 3.796 4.186 4.774

2 4.345 l 4.414 4.590 5.083 5.653 6.278

3 6.162 6.208 6.342 6.848 7.549 8.252

4 8.958 l 8.962 8.978 9.086 9.378 9.912

5 9.461 9.480 9.536 9.741 10.057 10.509

6 12.091 12.112 12.170 12.358 12.597 12.908

7 12.763 l 12.780 12.831 13.021 13.280 13.582

8 13.316 13.337 13.405 13.712 14.293 15.081

4 1 4.806 4.803 4.806 4.908 5.188 5.640

2 5.525 l 5.570 5.693 6.085 6.583 7.151

3 7.812 7.847 7.952 8.346 8.906 9.509

4 10.368 l 10.375 10.398 10.512 10.736 11.179

5 10.839 10.855 10.903 11.087 11.387 11.825

6 13.884 13.892 13.915 14.011 14.176 14.428

7 14.258 l 14.271 14.308 14.446 14.651 14.915

8 15.205 15.234 15.321 15.665 16.210 16.878

5 1 5.864 5.867 5.880 5.974 6.199 6.565

2 6.690 l 6.721 6.812 7.126 7.558 8.071

3 9.410 9.438 9.520 9.827 10.274 10.780

4 11.474 l 11.755 11.780 11.894 12.115 12.454

5 12.223 12.238 12.281 12.453 12.743 13.169

6 15.379 15.404 15.426 15.514 15.669 16.245

6 1 6.887 6.893 6.912 7.006 7.201 7.512

2 7.845 l 7.869 7.939 8.196 8.570 9.030

3 10.942 10.963 11.027 11.269 11.628 12.051

4 13.102 l 13.110 13.136 13.244 13.439 13.724

5 13.624 13.638 13.679 13.844 14.127 14.536

6 16.812 16.820 16.843 16.939 17.101 17.336
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Table 4

Frequencies O for an infinite solid cylinder of magnetostrictive cobalt iron oxide (CoFe2O4), r—radial mode,

l—longitudinal mode, t—torsional mode

m Mode k ¼ 0:0 k ¼ 0:5 k ¼ 1:0 k ¼ 2:0 k ¼ 3:0 k ¼ 4:0

0 1 3.828 l 3.849 3.945 4.645 5.884 6.992 t

2 5.583 r 5.701 5.822 t 6.074 t 6.473 t 7.023

3 5.735 t 5.757 t 6.024 6.957 7.852 8.854

4 7.009 l 7.053 7.188 7.853 9.229 10.216 t

5 9.400 t 9.414 t 9.453 t 9.611 t 9.868 t 10.854

6 10.164 l 10.185 10.246 10.494 10.934 11.710

7 12.977 t 12.987 t 13.016 t 13.130 t 13.319 t 13.580 t

8 13.312 l 13.316 13.338 13.487 13.783 14.219

9 13.687 r 13.746 13.912 14.498 15.372 16.431

10 16.456 l 16.470 16.510 16.645 t 16.794 t 17.001 t

1 1 1.841 l 2.055 2.512 3.387 4.107 4.869

2 3.249 3.306 3.484 4.262 5.200 5.984

3 5.327 l 5.364 5.477 5.959 6.835 7.905

4 7.408 7.427 7.485 7.707 8.058 8.535

5 8.529 l 8.540 8.583 8.819 9.291 10.008

6 9.353 9.430 9.649 10.416 11.350 11.807

7 11.155 11.167 11.203 11.354 11.703 12.505

8 11.696 l 11.716 11.777 12.033 12.534 13.566

9 14.700 14.709 14.735 14.838 15.010 15.247

10 14.850 l 14.864 14.904 15.067 15.345 15.748

2 1 2.625 2.587 2.586 2.892 3.507 4.281

2 3.054 l 3.200 3.512 4.253 4.976 5.695

3 5.077 5.123 5.261 5.794 6.527 7.257

4 6.701 l 6.735 6.836 7.250 7.955 8.872

5 8.987 9.004 9.052 9.246 9.564 10.001

6 9.961 l 9.980 10.036 10.269 10.671 11.262

7 12.293 12.322 12.406 12.676 12.992 13.330

8 13.135 13.121 13.138 13.286 13.583 14.022

9 13.159 l 13.221 13.349 13.826 14.641 15.731

10 16.333 l 16.346 16.386 16.496 16.657 16.887

3 1 4.052 4.001 3.982 4.156 4.574 5.163

2 4.200 l 4.325 4.559 5.160 5.838 6.539

3 6.931 6.964 7.062 7.430 7.957 8.552

4 8.009 l 8.040 8.133 8.509 9.129 9.928

5 10.534 10.548 10.592 10.767 11.057 11.458

6 11.336 l 11.354 11.409 11.628 11.996 12.523

7 14.124 14.136 14.172 14.313 14.537 14.831

8 14.573 l 14.586 14.625 14.779 15.041 15.418

4 1 5.302 5.236 5.222 5.356 5.680 6.152

2 5.316 l 5.438 5.620 6.114 6.724 7.395

3 8.746 8.766 8.826 9.059 9.421 9.883

4 9.275 l 9.306 9.400 9.766 10.336 11.045
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Table 4 (continued)

m Mode k ¼ 0:0 k ¼ 0:5 k ¼ 1:0 k ¼ 2:0 k ¼ 3:0 k ¼ 4:0

5 12.076 12.089 12.130 12.290 12.556 12.919

6 12.671 l 12.688 12.740 12.945 13.289 13.776

7 15.703 15.713 15.742 15.859 16.054 16.320

8 15.950 15.963 16.002 16.154 16.404 16.756

5 1 6.413 l 6.389 6.389 6.511 6.783 7.180

2 6.477 6.549 6.688 7.097 7.639 8.268

3 10.486 10.458 10.460 10.579 10.837 11.209

4 10.512 l 10.582 10.706 11.077 11.593 12.215

5 13.628 13.640 13.677 13.822 14.060 14.382

6 13.975 l 13.992 14.041 14.237 14.567 15.030

6 1 7.498 l 7.498 7.513 7.635 7.875 8.222

2 7.615 7.656 7.760 8.100 8.581 9.164

3 11.726 l 11.737 11.771 11.912 12.155 12.491

4 12.141 12.165 12.237 12.506 12.918 13.438

5 15.196 15.203 15.228 15.341 15.541 15.820

6 15.255 l 15.275 15.331 15.536 15.864 16.310

Table 5

Frequencies O for an infinite solid cylinder of electromagnetic composite made of (BaTiO3) and (CoFe2O4), r—radial
mode, l—longitudinal mode, t—torsional mode

m Mode k ¼ 0:0 k ¼ 0:5 k ¼ 1:0 k ¼ 2:0 k ¼ 3:0 k ¼ 4:0

0 1 3.824 l 3.771 3.746 4.284 5.505 6.469 t

2 4.580 r 4.750 5.128 5.463 t 5.903 t 6.615

3 5.084 t 5.109 t 5.181 t 6.132 7.163 8.249

4 7.002 l 7.023 7.094 7.454 8.244 9.243 t

5 8.333 t 8.348 t 8.392 t 8.569 t 8.856 t 9.792

6 10.153 l 10.157 10.174 10.288 10.554 11.107

7 11.353 r 11.407 11.546 t 11.676 t 11.888 t 12.179 t

8 11.503 t 11.514 t 11.560 12.090 12.802 13.494

9 13.297 l 13.307 13.340 13.489 13.816 14.487

10 14.647 t 14.656 t 14.681 t 14.783 t 14.951 t 15.184 t

1 1 1.841 l 2.023 2.424 3.198 3.907 4.683

2 2.855 2.916 3.111 3.947 4.870 5.617

3 5.322 l 5.332 5.380 5.694 6.444 7.438

4 6.535 6.560 6.629 6.882 7.267 7.802

5 7.779 7.830 7.962 8.332 8.787 9.421

6 8.520 l 8.551 8.657 9.177 10.041 10.615

7 9.879 9.892 9.932 10.093 10.404 11.285

8 11.683 l 11.691 11.719 11.848 12.113 12.581

9 13.023 13.033 13.063 13.180 13.373 13.638

10 14.515 14.540 14.602 14.762 14.965 15.251
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corresponds to m ¼ 1 for k ¼ 0 and 0.5 and as k increases the lowest frequency occurs when
m ¼ 2: Similar behavior is observed for BaTiO3. It is observed that the lowest frequencies for
CoFe2O4 occur for m ¼ 1 for higher values of k: In general, the behavior of the three materials is
similar.
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Table 5 (continued)

m Mode k ¼ 0:0 k ¼ 0:5 k ¼ 1:0 k ¼ 2:0 k ¼ 3:0 k ¼ 4:0

2 1 2.326 2.304 2.305 2.605 3.241 4.042

2 3.053 l 3.158 3.409 4.040 4.699 5.402

3 4.457 4.511 4.672 5.275 6.049 6.767

4 6.694 l 6.709 6.763 7.033 7.589 8.389

5 7.931 7.950 8.006 8.223 8.572 9.064

6 9.950 l 9.942 9.938 10.027 10.287 10.740

7 10.393 10.456 10.617 11.087 11.544 11.935

8 11.450 11.468 11.521 11.771 12.329 13.096

9 13.145 13.154 13.184 13.320 13.599 14.122

10 14.493 14.503 14.530 14.639 14.819 15.073

3 1 3.588 3.576 3.568 3.718 4.128 4.734

2 4.199 l 4.264 4.433 4.930 5.524 6.175

3 6.091 6.133 6.256 6.704 7.307 7.929

4 8.001 l 8.017 8.068 8.310 8.772 9.430

5 9.294 9.310 9.360 9.554 9.876 10.334

6 11.324 l 11.329 11.348 11.450 11.675 12.052

7 12.345 12.367 12.428 12.634 12.910 13.241

8 13.440 13.469 13.556 13.882 14.336 14.786

4 1 4.692 4.689 4.692 4.799 5.095 5.566

2 5.314 l 5.356 5.475 5.870 6.391 6.989

3 7.700 7.731 7.822 8.153 8.613 9.125

4 9.266 l 9.281 9.330 9.550 9.952 10.513

5 10.650 10.666 10.711 10.892 11.194 11.622

6 12.658 12.665 12.687 12.792 13.002 13.337

7 13.821 13.835 13.873 14.019 14.245 14.542

5 1 5.729 5.732 5.744 5.841 6.077 6.459

2 6.411 l 6.441 6.528 6.844 7.297 7.841

3 9.247 9.270 9.336 9.579 9.928 10.342

4 10.501 l 10.516 10.563 10.765 11.123 11.612

5 12.016 12.031 12.074 12.245 12.530 12.929

6 13.961 l 13.968 13.991 14.094 14.291 14.598

6 1 6.733 6.738 6.756 6.851 7.054 7.377

2 7.495 l 7.518 7.584 7.842 8.235 8.726

3 10.723 10.739 10.787 10.964 11.229 11.563

4 11.714 l 11.729 11.773 11.960 12.283 12.717

5 13.397 13.411 13.452 13.614 13.882 14.249
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Eq. (15) shows the effect of assuming both m and k equal zero. In that case Srr and Syy govern
the behavior of U : V is governed by Sry alone and W is given by Srz and all motions are
uncoupled. The potentials are functions of the radial co-ordinate as shown by Eq. (16) and (17). If
m ¼ 0 and ka0 it is observed that U and W are coupled through Srz: Similarly, if ma0 and
k ¼ 0; U and V are coupled through Syy and Sry:

5. Conclusions

Free vibrations of infinite magneto-electro-elastic cylinders have been studied using a finite
element formulation. The analysis of a completely coupled electromagnetic material that has been
proposed in the literature is included. Results are presented in tabular format for combinations of
circumferential wave number and longitudinal wave number. The governing equations in
cylindrical co-ordinates are recorded for future reference. A complete set of consistent non-
dimensional parameters have been proposed and used for the magneto-electro-elastic equations in
cylindrical co-ordinates.

Acknowledgements

The author wishes to acknowledge support as a visiting summer faculty member by the
Weapons Response Group, Engineering Sciences and Applications Division, of the Los Alamos
National Laboratory, and the use of the Los Alamos National Laboratory Research Library.

Appendix A. Governing equations in terms of displacements

The governing equations in cylindrical coordinates in terms of mechanical displacements u; v; w;
electrical potential j; and magnetic potential C for material properties given by Eq. (8) are as
follows:
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